2 research outputs found

    Exoskeletons with virtual reality, augmented reality and gamification for stroke patients' rehabilitation : systematic review

    Get PDF
    Background: Robot-assisted therapy has become a promising technology in the field of rehabilitation of post-stroke patients with motor disorders. Motivation during the rehabilitation process is a top priority for a majority of stroke survivors. With the advancement in technology, there has been the introduction of Virtual Reality, Augmented Reality, customizable games or a combination thereof that aid robotic therapy in retaining or increasing the interests of patients to keep performing the exercises. However, there are gaps in evidence regarding the transition from clinical rehabilitation to home-based therapy and it calls for an updated synthesis of literature showcasing this trend. The present review proposes a categorization of these studies according to technologies used by them and also details research in upper limb and lower limb applications. Objective: The goal of this work was to review the practices and technologies implemented for the rehabilitation of post-stroke patients. It aims to assess the effectiveness of exoskeleton robotics in conjunction with any of the three technologies, Virtual Reality, Augmented Reality or Gamification for improving activity and participation in post-stroke survivors. Methods: A systematic search of the literature on exoskeleton robotics applied with any of the three technologies, Virtual Reality, Augmented Reality or Gamification, was performed in the databases namely; MEDLINE (Medical Literature Analysis and Retrieval System Online, or MEDLARS Online), EMBASE (Excerpta Medica database), Science Direct & The Cochrane Library. Exoskeleton based studies that did not include any VR, AR or gamification elements were excluded and publications from the year 2010 to 2017 were included. Results in the form of improvements in patients were also recorded and taken into consideration in finding the effectiveness of therapy on patients. Results: Thirty studies were identified based on the inclusion criteria that included randomised controlled trials as well as explorative research pieces. There was a total of around 385 participants across the studies. Use of technologies such as Virtual Reality/Augmented Reality/Gamification based Exoskeletons are capable of filling the transition from clinical to home-based settings. Our analysis showed that there were in general improvements in the motor deficiency for patients using the novel interfacing techniques with exoskeletons. This categorization of studies helps in understanding the scope of rehabilitation therapies that can be successfully arranged for home-based rehabilitation. Conclusions: Future studies are necessary to explore various types of customizable games required to retain or increase the motivation of patients going through the therapy individually

    [In Press] Exploring serious games for stroke rehabilitation : a scoping review

    No full text
    Aims and Objectives: Stroke is the main cause of long-term disability and happens mostly in the older population. Stroke affected patients experience either of the cognitive, visual or motor losses and recovery requires time and patience as they have to do physical exercises every day and at times repetitively. There are various types of stroke rehabilitation exercises focussing on technological solutions that include therapies performed using games. Motion-based games are popular in encouraging participants to perform repetitive tasks without being getting bored. Therefore, in this study, we have explored studies that included the use of games for stroke rehabilitation to understand the design principles and characteristics of the games used for these purposes. Method: A number of medical respositories were searched for relevant articles in a window of 2008-2018. 18 studies were chosen for the scoping review depending on the inclusion criteria, and design principles used in these studies are analysed and evaluated. Results and Conclusion: We present main findings from our review concerning the attributes of existing games for stroke rehabilitation such as meaningful play, handling of failures, emphasising challenge, and the value of feedback. We conclude with a list of design recommendations that future serious game developers can consider while designing interfaces for stroke patients. Implications for Rehabilitation This review exhibits that the usage of gaming technologies is a very effective interactive mechanism for stroke based rehabilitation. Further our review also shows that serious games provide an avenue and opportunity for customized and highly contextualized gameplay Our review also suggests that effective features to incorporate into serious games for rehabilitation includes; facilitating challenge and recovery from errors
    corecore